ESnet team to give multiple talks about networking, automation, and QUANT-NET at NORDUnet Conference and GEANT’s SIG-NGN meeting

The 31st NORDUnet Conference will take place in Reykjavik, Iceland from September 13-15, 2022. 

ESnet staff will also be in attendance at the Special Interest Group on Next Generation Networking (SIG-NGN) on September 12, 2022, the day before the NORDUnet Conference.

Here’s where you can find ESnet team’s talks during these events: 

Monday, September 12, 2022: SIG-NGN

The next generation NREN lightning talks 
09:05 – 10:30am GMT

The lightning talks will feature two presentations from ESnet: 

  • ESnet Effort to Build Upon the NML and MRML – John MacAuley
  • LHC Next Generation Requirements Gathering – Eli Dart

Future network architectures. Technological change to support data moving / data planes 
11:00am – 12:30pm GMT

This session will start with 10-minute presentations, including two by ESnet staff:

  • ESnet7 – Chin Guok
  • Underlay Packet Inspection, Making Traffic Engineering Decisions at L2 – Yatish Kumar

These talks will be followed by a panel discussion. 



How do we stitch and share our L1-L3+ networks to introduce better and new services
12:00pm – 3:30pm GMT

This session includes a series of short talks, including:

  • Real Time Data Processing Requirements – Yatish Kumar

Yatish Kumar will also host a discussion on future networking technologies from =2:00pm – 3:20pm GMT


Tuesday, September 13, 2022: NORDUnet Conference

The ESnet6 Approach to Network Orchestration and Automation
11:00am – 12:30pm GMT | Track 1 / Room: Silfurberg B

Speaker: Scott Richmond

Abstract: Network Orchestration is a defining factor in next generation networks, enabling operators to deliver more consistent and reliable services. ESnet has leveraged a combination of internally developed tools, open source software, and commercial software to orchestrate and automate network configuration deployment. This approach has enabled rapid deployment of new network services, as well as ensuring that configuration standards are well enforced when deploying network services.

During this talk, we will provide a brief history of automation at ESnet, dive into what our goals were for orchestration and automation in the ESnet6 project, and describe the technology and process that we used to meet those goals. Finally, we will discuss the hurdles encountered and lessons we learned along the way while developing this tooling.

Eli Dart was part of the technical program committee and is the chair for the HPC session, taking place in Track 2 / Room: Rima from 2:00 – 3:30 pm GMT. 


Wednesday, September 14, 2022: NORDUnet Conference

Experimenting with Teleportation Based Physical Layer for the Network: QUANT-NET
1:30pm – 3:00pm GMT | Track 1 / Room: Silfurberg B

Speaker: Inder Monga

Abstract: QUANT-NET takes an application-centric and systems-based approach to building a Quantum Internet testbed. The main thrust of this effort is to build a three-node distributed quantum computing testbed between two sites, Lawrence Berkeley National Lab and the University of California Berkeley (UCB) connected with an entanglement swapping substrate over optical fiber and managed by a quantum network protocol stack. We will implement the most basic building block of distributed quantum computing by teleporting a controlled-NOT gate between two nodes. This approach will enable research, prototyping, measurement and testing of the entire quantum network stack from physical layer to the application. The talk will describe our proposed testbed and progress.


ESnet’s Wireless Edge: Extending Our Network to Support Field Science

Throughout the world, earth and environmental scientists are deploying new kinds of sensors to measure and understand how the climate is changing and how we can best manage key infrastructure and resources in response. 

Operation and data analysis of these sensors can often be challenging, as they are deployed in areas with limited power, sometimes with no data connectivity beyond the periodic physical collection of memory cards. Sensors may be in areas where weather and other factors make access laborious and challenging, such as at the top of a mountain, down a borehole, or under dense forest canopy.

Solar-powered meteorological and hydrological sensors deployed at the Snodgrass Field Site, Crested Butte, July 2022 at approximately 9,000 ft. elevation. (Photo: Andrew Wiedlea)

As the number, types, and capabilities of these sensors increases, the U.S. Department of Energy’s (DOE) Energy Sciences Network (ESnet) is working on ways to extend its high-speed network to support the needs of scientists working in remote, resource-challenged environments where our fiber backbone cannot be extended. Using advanced wireless technologies such as low-Earth orbit constellations, 5G, and private citizen band radio system cellular, mmWave, and Internet-of-Things tools like long-range (LoRa) mesh networks, we are developing ways to remove the limits of geographical constraints from field scientists, just as we have traditionally sought to do for laboratory scientists around the DOE complex.

In early July this year, ESnet took a step forward in these efforts by installing a private cellular network near Crested Butte, Colorado, supporting sensor fields being used by Earth and environmental scientists on Lawrence Berkeley National Laboratory’s (Berkeley Lab’s) Surface Atmosphere Integrated Laboratory program.  

The purpose of this effort is to assess requirements for operation of a private 4G/5G wireless network in a remote and changing environment, which can pull ESnet capabilities and services supporting scientific research out beyond our performant 13,000 km optical backbone. We are also using this research to identify specific operational, workflow, and data movement needs for the Earth and environmental science community as part of building ESnet’s logistics, operational, and human capital resources available to support the Earth and environmental science mission.

Our system, which is currently being configured, is built around a Nokia Digital Automation Cloud private cellular capability, with antennas being placed across a valley from sensor fields at the Snodgrass Field Site in Crested Butte. The intent is to use this cellular service to automate and improve the efficiency of data collection from sensors, using cellular routers and radios, depending on the specific capabilities of each sensor system. For those sensor systems that cannot be directly connected to a cellular network, we are establishing solar-powered sensor stations that will provide local area bridge (several hundred meter) connectivity to local sensors via wifi, LoRa, or direct ethernet cable. 

Once data is backhauled from a sensor field through our private cellular network, it will be transmitted back to ESnet via SpaceX’s Starlink low earth orbit satellite system, connecting to ESnet at a peering location in Seattle, Washington, and then through our optical backbone to the National Energy Research Scientific Computing Center at Berkeley Lab for processing and storage.

With fantastic assistance and collaboration from the Atmospheric Radiation Monitoring program, the Rocky Mountain Biological Laboratory, and Dan Feldman and Charulekha Varadarajan in the Watershed Function Science Focus Area at Berkeley Lab, our first field campaign was both great fun and extremely productive. 

We will return later in the Fall to complete network configuration and connection of sensors to the network. Once this is done, we can begin the next phase of this research: studying the operational performance and service requirements necessary to support field science through the demanding conditions provided by winter in the Colorado High Rockies. We will also begin to develop standard deployment equipment specifications and practices that we can use to support ESnet wireless edge deployments supporting science in other regions and for other purposes.  

This effort is being made possible by teamwork across ESnet and Berkeley Lab, including outstanding support at Berkeley Lab from Chris Tracy, Jackson Gor with ESnet network engineering, and Steve Nobles and many others with IT Telephone Services. The Colorado deployment success depended on the hard (often physical) work of Stijn Wielandt-EESA, Kate Robinson (ESnet Network Engineering), Jeff D’Ambrogia (IT-Science IT), and Jeff Chavez with Nokia.

ESnet staff attend strategic on-site meetings for the first time in years!

Last week, over 50 ESnet employees gathered at Berkeley Lab for a week of strategizing and socializing. Here are some pictures from their adventures!

Jealous of all the fun we had? Want to hang out with us, too? Good news – Registration will open soon for Confab22, ESnet’s first user meeting! Keep an eye on the blog or pre-register for updates!

Save the date for ESnet’s first annual user meeting – Oct 12-13, 2022!

Join us 12–13 October 2022 for ESnet’s first science user meeting!

Science is a conversation! Come join the conversation and help shape the future of scientific networking at the inaugural ESnet yearly science user meeting – Confab22.  

What to expect at Confab22:

  • Co-design the future of data management and networking with peers across the scientific community and ESnet staff
  • Share with colleagues from other research programs and identify common needs and solutions
  • Learn about the latest networking trends and capabilities
  • Collaborate and enjoy stimulating professional discussions

More information (including the event location, our exciting agenda, and a registration link) will be released soon.

Interested in attending Confab22 (either in-person, or virtually)? Pre-register now to be notified once registration opens. .

A word from Inder Monga: The Road to ESnet6 (Part 1)

Inder Monga, Executive Director of ESnet.

Dear Friends, Well-wishers, Colleagues, and all of ESnet,

In October of this year we will launch ESnet6, a next-generation network featuring an entirely new, software-driven network design that enhances the ability to rapidly invent, test, and deploy new innovations to meet the data needs of the Office of Science/DOE.

We put forth the vision for ESnet6 in 2016. Since then, this $151M project (total project cost – DOE 413.3 parlance including contingency) has overcome pandemic-induced issues like site lockdowns, differing vaccination and inter-state travel policies, and variable supply chain delays, and is now in its final stages of implementation. As I prepare this historic unveiling, I can’t help but look back at what the team accomplished last year.

This is the first post in a series of blog posts about the people, partnerships, and innovations that have paved the road to ESnet6.

2021 was a year for growth within ESnet. We have 100+ people in the organization now—a 30% increase from last year—and it has been great to have new employees on-boarded, integrated, and productive in this challenging environment. 

A diagram showing the dimensions of growth within ESnet: Foundations, Innovation, Co-design, and Culture. Foundations, Innovation, and Co-design all point outward in separate directions, while Culture lies alongside all three Axes, growing in tandem with them.
The dimensions of growth for ESnet

Looking towards the future, we think of ESnet growing around four dimensions. The three spatial axes are: 

  • Foundations: Next Generation Network and Services 
  • Innovation: Testbeds and Advanced Research and Development
  • and Co-design: Partnerships with Science for new data and network solutions. 

The fourth axis, Culture, is pervasive across all three dimensions. 

The main reason for choosing this very technical representation is to illustrate that these are not independent thrusts—success in each of these dimensions depends on the capabilities of the other.

In this post, I’d like to focus on that first axis: Foundations. In the next few posts, I will focus on the Innovation and Co-Design dimensions and share more thoughts about our focus for 2022 and beyond.

Major capacity improvements

In 2021, we installed a brand new routing infrastructure on our network backbone, while decommissioning a portion of the previous generation packet processors in parallel. We seamlessly transitioned all ESnet customers and peers onto the forty new backbone routers before the holidays, and the remaining router upgrades at our customer sites are in progress and scheduled through 2022.

The greenfield optical infrastructure (installed at 300 locations in 2020— another noteworthy accomplishment) is getting a wonderful upgrade: 400G wavelengths are being standardized across our national backbone as we complete the second phase of optical upgrades.

In addition to our team’s intricate efforts to decommission the existing network, we added another 100G on the ring in Europe (thanks to our collaboration with GEANT). This ensured that the first Large Hadron Collider Data Challenge had enough bandwidth to accommodate both ESnet scientific data and LHC data challenge (test) streams. We also established a new point of presence in Dallas to support new peerings and the FABRIC project

ESnet network map showing LHC data challenge traffic sending nearly 100Gbps from Amsterdam to Boston
ESnet network map showing LHC data challenge traffic sending nearly 100Gbps from Amsterdam to Boston.

Creating a smarter network

The vision laid out in 2016 focused not only on capacity, but also on improving the essential framework of how we operate with the network. 

We made a significant investment in building out a high-availability site within 10ms of our main data center, in addition to our disaster-recovery site on the east coast. So any planned or unplanned power outages will be handled without a scramble. While the supply chain issues prevented the site from being ready for operations, we are making steady progress and look forward to completing it this year. 

The software orchestration team made tremendous progress in laying down the vision and framework for automation. They were supported by strong internal collaboration with the engineering team. Many repetitious deployments were automated, and I know it took diligent effort to make these tools available in the right time frame, aligned with evolving constraints of the deployments. A few examples of where automation was used include:

  • Deployment of optical wavelengths on our backbone
  • Deployment of routers and base configurations, and service provisioning
  • Customer migration configurations from old network to the new equipment automatically generated from ESnet Database (ESDB)
  • Virtualized test environment was developed to test out new tools and services before actual in-field deployment.

This year, we prepare to bring the official DOE 413.3 ESnet6 project to a close, but as you know the network never sleeps, data never stops growing, and we have to constantly evolve the network. I can proudly say that we have the core foundations of the enduring ESnet user facility ready to handle the next big challenges of Data, AI, and Integrated multi-facility research that the scientists and National Labs are actively pursuing.

Wishing you all a very Happy New Year from ESnet. 

Inder

This post is part of a series of posts reflecting on the road to ESnet6. Check back soon to see upcoming posts from Inder focusing on innovation, co-design, and his vision for ESnet6 and beyond.

ESnet Highlights from ZeekWeek’21

Fatema Bannat Wala presenting at ZeekWeek21

Slides and videos from ZeekWeek have just been made available — here are links to ESnet highlights.


ZeekWeek, an annual Fall conference organized by the Zeek Project, took place online from October 13-15 this year. The conference had over 2000 registered participants from the open source user community this year, who got together to share the latest and greatest about this cyber-security and network monitoring software tool.

Berkeley Lab staff member Vern Paxson developed the precursor to the Zeek intrusion detection software, then called Bro, in 1994. As an early adopter, ESnet’s cybersecurity team has strong relationships with the Zeek community, and this ZeekWeek was an opportunity to showcase advances and uses made by the software by ESnet and the entire Research and Educational Networking Community.


The talk “DNS and Spoofed traffic investigation with Zeek,” presented by Fatema Bannat Wala, discussed how Zeek is being used to do network traffic analysis/investigations at ESnet by triaging abnormal activities when these occur on our network.

The talks “A Better Way to Capture Packets with DPDK” and “Details for DPDK plugin development and performance measurement presented by Vlad Grigorescu and Scott Campbell, detailed the development process of the plugin and the performance enhancements it brings to the network packet capture technology.

Fatema Bannat Wala also did a training session on “Introduction to Zeek,” which provided hands-on experience with Zeek tools and information about how to get involved with the collaboration.

ESnet’s cybersecurity team looks forward to continued collaboration with the Zeek community, attending next year’s ZeekWeek, and to contributing future code enhancements to this great software ecosystem.

ESnet Machine Learning Researchers Win Best Paper at MLN ‘2021!

MLN '2021 Best Paper Award Notification

Sheng Shen, Mariam Kiran, and Bashir Mohammed have just been awarded the Best Paper award at the International Conference on Machine Learning for Networking (MLN). Sponsored by the Conservatoire National des Arts et Métiers (CNAM), the École Supérieure d’Ingénieurs en Électrotechnique et Électronique (ESIEE), and Laboratoire d’Informatique Gaspard-Monge (LIGM), MLN is being held virtually 1-3 December 2021.

The paper, “DynamicDeepFlow: An Approach for Identifying Changes in Network Traffic Flow Using Unsupervised Clustering,” uses a hybrid of deep learning variational autoencoder model and a shallow learning k-means to help identify unique traffic patterns across ESnet. These unique patterns can help identify if a new experiment has started or whether current network bandwidth is changing.

DynamicDeepFlow (DDF) model structure

“We’re very excited to receive this recognition and the conference was a wonderful opportunity to exchange thoughts and ideas with peers in France. MLN is a conference dedicated to discussing machine learning applications in networks. Our next task is to integrate DynamicDeepflow with Netpredict to show real-time information in ESnet data” — Mariam Kiran

Papers from MLN will be published as post-proceedings in Springer’s Lecture Notes in Computer Science (LNCS).

ESnet Highlights from the National Science Foundation’s Cybersecurity Summit ’21

The National Science Foundation (NSF) Cybersecurity Center of Excellence, Trusted CI Project hosts a yearly cybersecurity summit, inviting people from various NSF-funded research organizations to share innovations and ideas. Here are some videos of ESnet presentations.

Scott Campbell presented “ESnet Security Group Impact on Network Architecture” where he discussed some of the social, technical, and architectural outcomes of the ESnet6 network upgrade that were beneficial to the organization. By being involved early, security design elements were incorporated into workflows at early stages and were both tightly integrated and vetted during the core design process. This early involvement also heightened the security group’s visibility, which led to a better understanding of how the various groups interact and their different methods of problem-solving and time management.

Eli Dart and Fatema Bannat Wala presented “Best practices for securing Science DMZ,” focusing on disentangling security policies and enforcement for science flows from traditional security approaches for business systems, and use of the Science DMZ model to protect high-performance science flows. They discussed thinking of the Science DMZ as a security architecture that provides useful and implementable security controls without impacting performance. 

ESnet Scientists awarded best paper at SC21 INDIS!

A combined team from ESnet and Lehigh University was awarded the best paper for Exploring the BBRv2 Congestion Control Algorithm for use on Data Transfer Nodes at the 8th IEEE/ACM International Workshop on Innovating the Network for Data-Intensive Science (INDIS 2021), which was held in conjunction with the 2021 IEEE/ACM International Conference for High Performance Computing, Networking, Storage and Analysis (SC21) on Monday, November 15, 2021.

The team was comprised of:

  • Brian Tierney, Energy Sciences Network (ESnet)
  • Eli Dart, Energy Sciences Network (ESnet)
  • Ezra Kissel, Energy Sciences Network (ESnet)
  • Eashan Adhikarla, Lehigh University

The paper can be found here. Slides from the presentation are here. In this Q+A, ESnet spoke with the award-winning team about their research — answers are from the team as a whole.

INDIS 21 Best Paper Certificate

The paper is based on extensive testing and controlled experiments with the BBR (Bottleneck Bandwidth and Round-trip propagation time), BBRv2 and the Cubic Function Binary Increase Congestion Control (CUBIC) Transmission Control Protocol (TCP) Internet congestion algorithms. What was the biggest lesson from this testing?

BBRv2 represents a fundamentally different approach to TCP congestion control. CUBIC (as well as Hamilton, Reno, and many others) are loss-based, meaning that they interpret packet loss as congestion and therefore require significant network engineering effort to achieve high performance. BBRv2 is different in that it measures the network path and builds a model of the path – it then paces itself to avoid loss and queueing. In practical terms, this means that BBRv2 is resilient to packet loss in a way that CUBIC is not. This comes through loud and clear in our data.

What part of the testing was the most difficult and/or interesting?

We ran a large number of tests in a wide range of scenarios. It can be difficult to keep track of all the test configurations, so we wrote a “test harness” in python that allowed us to keep track of all the testing parameters and resulting data sets.

The harness also allowed us to better compare results collected over real-world paths to those in our testbed environments. Managing the deployment of the testing environment though containers also allowed for rapid setup and improved reproducibility. 

You provide readers with links to great resources so they can do their own testing and learn more about BBRv2. What do you hope readers will learn?

We hope others will test BBRv2 in high-performance research and education environments. There are still some things that we don’t fully understand, for example there are some cases where CUBIC outperforms BBRv2 on paths with very large buffers. It would be great for this to be better characterized, especially in R&E network environments.

What’s the next step for ESnet research into BBRv2? How will you top things next year?

We want to further explore how well BBRv2 performs at 100G and 400G. We would also like to spend additional time performing a deeper analysis of the current (and newly generated) results to gain insights into how BBRv2 performs compared to other algorithms across varied networking infrastructure. Ideally we would like to provide strongly substantiated recommendations on where it makes sense to deploy BBRv2 in the context of research and educational network applications.

Arecibo Support Wins SC21 HPCwire Readers’ Choice Award!

Arecibo dish after the collapse

As part of a team spanning 15 government, academic, and industrial partners, the Engagement and Performance Operations Center (EPOC) – a collaboration between Indiana University and ESnet – was awarded the “Best HPC Collaboration (Academia/Government/Industry)” HPCwire Readers’ Choice award on Tuesday, Nov. 16. The award, which was made at the High Performance Computing, Networking, Storage and Analysis (SC21) conference, recognizes the effort and collaboration required to move and safeguard irreplaceable data (over 50 years of astronomical observations) from the Arecibo observatory following the structural collapse of this scientific resource in 2016.

At ESnet, Ken Miller, George Robb, and Jason Zurawski supported these efforts as both full members of EPOC and ESnet staff. Both Jason and Ken divide their time between ESnet’s Science Engagement Team, while George is with ESnet’s Infrastructure Systems group. LightBytes looped up with Jason Zurawski to get his thoughts on the project and award, and an update on the Arecibo effort since our post in April 2021 on this project.


Now that data from Arecibo has been migrated to the Texas Advanced Computing Center (TACC), what happens now, and how will this data be used?

The team at the University of Central Florida has been engaged with TACC on several ways to build up the capabilities for their data analysis and sharing requirements. They are working to deploy a portal that will allow researchers access to the data, as well as build workflows to investigate and process using computation provided by TACC.

The team at Arecibo is also still going to process much older data that still resides on tape. Due to the delicate state of the media, it is carefully being read and transferred to on-island storage before being transmitted to TACC for archiving. This work will take several more months to complete.

What do you think the lessons from this effort are in terms of getting so many different organizations to work together to support this very challenging problem?

The collapse that Arecibo experienced sent ripples through the R&E community because researchers and technology professionals alike knew there was a limited window to act on replicating important observations gathered over the years. The partners in this effort were motivated to act, and that removed many barriers to putting some solutions in place. Everyone collaborated efficiently with their core competencies, and we continue to work together as the next steps for the scientific collaboration are planned.

Plans are starting to emerge for a “next generation” Arecibo based on the loss of this instrument, how might the next generation of data management resources be shaped by this collaboration?

Now that there has been some time to evaluate the work, it has also spurred UCF and Arecibo to plan for the future with respect to computation, storage, and network connectivity both in Puerto Rico and in Florida.  With these improvements planned, they will be well-positioned to serve the scientific data for years to come.  New instruments will no doubt increase the data demands by many orders of magnitude – addressing all aspects of the data pipeline now, and then gradually increasing the capabilities over time, will help to prepare for these emerging challenges. 

Congratulations to all of the organizations and staff who helped prevent the loss of this data!