ESnet6 Unveiled Tomorrow!

We’re getting things set up for the ESnet6 Unveiling tomorrow – our tent has gone up, we’re holding final rehearsals for the presentations, printing badges, and doing a thousand other small things.  

The only thing missing from our pictures is you! 

See you tomorrow for the big day, if you are visiting in person, travel safe, and if you are joining us virtually, the show starts at 9:00 AM on https://streaming.lbl.gov.

ESnet’s Wireless Edge: Extending Our Network to Support Field Science

Throughout the world, earth and environmental scientists are deploying new kinds of sensors to measure and understand how the climate is changing and how we can best manage key infrastructure and resources in response. 

Operation and data analysis of these sensors can often be challenging, as they are deployed in areas with limited power, sometimes with no data connectivity beyond the periodic physical collection of memory cards. Sensors may be in areas where weather and other factors make access laborious and challenging, such as at the top of a mountain, down a borehole, or under dense forest canopy.

Solar-powered meteorological and hydrological sensors deployed at the Snodgrass Field Site, Crested Butte, July 2022 at approximately 9,000 ft. elevation. (Photo: Andrew Wiedlea)

As the number, types, and capabilities of these sensors increases, the U.S. Department of Energy’s (DOE) Energy Sciences Network (ESnet) is working on ways to extend its high-speed network to support the needs of scientists working in remote, resource-challenged environments where our fiber backbone cannot be extended. Using advanced wireless technologies such as low-Earth orbit constellations, 5G, and private citizen band radio system cellular, mmWave, and Internet-of-Things tools like long-range (LoRa) mesh networks, we are developing ways to remove the limits of geographical constraints from field scientists, just as we have traditionally sought to do for laboratory scientists around the DOE complex.

In early July this year, ESnet took a step forward in these efforts by installing a private cellular network near Crested Butte, Colorado, supporting sensor fields being used by Earth and environmental scientists on Lawrence Berkeley National Laboratory’s (Berkeley Lab’s) Surface Atmosphere Integrated Laboratory program.  

The purpose of this effort is to assess requirements for operation of a private 4G/5G wireless network in a remote and changing environment, which can pull ESnet capabilities and services supporting scientific research out beyond our performant 13,000 km optical backbone. We are also using this research to identify specific operational, workflow, and data movement needs for the Earth and environmental science community as part of building ESnet’s logistics, operational, and human capital resources available to support the Earth and environmental science mission.

Our system, which is currently being configured, is built around a Nokia Digital Automation Cloud private cellular capability, with antennas being placed across a valley from sensor fields at the Snodgrass Field Site in Crested Butte. The intent is to use this cellular service to automate and improve the efficiency of data collection from sensors, using cellular routers and radios, depending on the specific capabilities of each sensor system. For those sensor systems that cannot be directly connected to a cellular network, we are establishing solar-powered sensor stations that will provide local area bridge (several hundred meter) connectivity to local sensors via wifi, LoRa, or direct ethernet cable. 

Once data is backhauled from a sensor field through our private cellular network, it will be transmitted back to ESnet via SpaceX’s Starlink low earth orbit satellite system, connecting to ESnet at a peering location in Seattle, Washington, and then through our optical backbone to the National Energy Research Scientific Computing Center at Berkeley Lab for processing and storage.

With fantastic assistance and collaboration from the Atmospheric Radiation Monitoring program, the Rocky Mountain Biological Laboratory, and Dan Feldman and Charulekha Varadarajan in the Watershed Function Science Focus Area at Berkeley Lab, our first field campaign was both great fun and extremely productive. 

We will return later in the Fall to complete network configuration and connection of sensors to the network. Once this is done, we can begin the next phase of this research: studying the operational performance and service requirements necessary to support field science through the demanding conditions provided by winter in the Colorado High Rockies. We will also begin to develop standard deployment equipment specifications and practices that we can use to support ESnet wireless edge deployments supporting science in other regions and for other purposes.  

This effort is being made possible by teamwork across ESnet and Berkeley Lab, including outstanding support at Berkeley Lab from Chris Tracy, Jackson Gor with ESnet network engineering, and Steve Nobles and many others with IT Telephone Services. The Colorado deployment success depended on the hard (often physical) work of Stijn Wielandt-EESA, Kate Robinson (ESnet Network Engineering), Jeff D’Ambrogia (IT-Science IT), and Jeff Chavez with Nokia.

Three questions with a new staff member! Please meet Rémy Doucet

Rémy comes to us from ByteDance/TikTok where they worked as a Systems Engineer responsible for large-scale server allocation and bare-metal OS deployment.  They have worked as a systems engineer for five years, with experience both in the Telecom industry and for large social media companies.  Rémy began their career as a software developer in Python but shifted when they realized a passion for infrastructure and systems.  

Rémy Doucet

What brought you to ESnet?

I have a long history of activism and also worked in the nonprofit sector prior to my engineering career. I became dissatisfied working only for social media giants and began seeking a career that married my passion for technology with my drive to make a positive impact on the world. Climate change is the most pressing issue humans are facing today, so I am excited to begin contributing to a place that not only has an impressive legacy of scientific discovery, but is continuing to make strides in areas such as renewable and clean energy.

What is the most exciting thing going on in your field right now?

Although it is not exactly under my purview, I have always been fascinated by artificial intelligence. Not only will it continue to transform our society in unimaginable ways, but I am also curious to see how it will come to be used for systems administration tasks such as monitoring and deployment. Currently, these processes are still largely human and automation driven but I think we will start to see more AI incorporated into the process in the future. For my personal interests, I enjoy experiencing art or music created by AI.

What book would you recommend?

Simulacra and Simulation by Jean Baudrillard. It is a philosophical treatise that I think will become increasingly relevant in our society.

3 Questions with Jeremy Randolph

Please meet Jeremy Randolph, the newest software engineer in ESnet’s Software Measurement and Analysis Group!

Jeremy Randolph

Jeremy has an extensive background in distributed systems, working for companies like DataDog, Fitbit, and Google, to build resilient backends to power customer data visualization and real user interactions. Before that, he also worked in the video game industry at 2K Sports, LucasArts, “The Force Unleashed” franchise, and number of other sports titles.   

What brought you to ESnet?

Recently, I’ve been spending chunks of my free time watching math and physics channels. I’ve also tried some publicly available lecture series with varying degrees of success. In the recent past, working on distributed systems has been rewarding, but I’ve never felt passionate about the wider mission statement of the various companies I’ve worked at. I see ESnet as a chance to build interesting systems while also contributing to our scientific understanding of the universe.

What is the most exciting thing going on in your field right now?

The slow, but steady migration to cloud-based environments and virtual systems. Software Engineers tell horror stories about how our vocation used to have to write our programs on punch cards and would get the program’s output the next day (including things like syntax errors). Real-time syntax highlighting of compile errors in my  IDE (integrated development environment) allows me to focus on the bigger picture and more complicated systems. I suspect the next generation of software engineers will also tell horror stories about DevOps and how we had to have intimate knowledge about what hardware our code was running on and where specifically in the world it was running.

What book would you recommend?

Rendezvous with Rama, by Arthur C. Clarke. 

ESnet History on (virtual) Display

As part of LBL’s The Next 90 campaign, new features on the past, present and future of the Computing Sciences Area (CSA) and ESnet have just been released!

From the first documented demonstration of 10 gigabit Ethernet in 2002….

For a vision of where we, and all of CSA, started back in the 1990s, including a video of early ESnet telecommuting experiments well before Zoom, please see this link.

For an overview of CSA with Jonathan Carter, please see this link.

The ESnet interactive timeline has also been updated — the story continues!

3 Questions with Katrina Turner

Three questions with a new staff member! Aloha, Katrina!

Katrina hails from Kāne’ohe, Hawai’i where she was born and raised. She recently graduated from the University of Hawai’i at Mānoa with an M.S. in Computer Science and is now with ESnet’s Software Engineering Management and Analysis Group.  Katrina loves her island life and enjoys dancing hula, hiking, and going to the beach.  She also loves both playing and making video games in her spare time.

Katrina Turner

What brought you to ESnet?

During my time as a Research Assistant at UH Mānoa, I had the opportunity to work with some of ESnet’s team members and I really admired both the work they did as well as the work culture they were a part of.  When I heard there were openings at ESnet, I jumped at the chance to continue working with such awesome people!

What is the most exciting thing going on in your field right now?

In recent years, Data Visualization has become more popular with the general public, being shared through social media and used by the masses instead of only scientists and analysts.  As a result, we are seeing really creative and interesting ways of showing data beyond the standard charts.  Also, the integration of machine learning to allow us to easily visualize large amounts of data is really exciting.

What book would you recommend?

If you like Fantasy Fiction, the Sword of Truth series by Terry Goodkind is great, but definitely a time commitment. I also just started reading The Windup Girl.

Fatema Bannat Wala named Zeek Community Champion!

Fatema Bannat Wala

Fatema Bannat Wala with our Cyber Security team was recognized with the 2021 Zeek Community Champion award by Corelight! More information on the award and her work with Zeek can be found here.

Zeek is an open source network security monitoring software extensively used by ESnet. Zeek (formally called Bro) was initially developed by researchers at Berkeley Lab, and more information on ESnet’s use of Zeek can be found in Fatema’s October Light Bytes post.

CONGRATULATIONS, Fatema!

Three Questions with a new staff member: John Amerkhanian

Please meet our newest Network Operations Center Engineer, John Amerkhanian. John comes to us from Richmond, CA, and grew up locally in Albany, CA. He graduated from UC Berkeley in 2015 with a degree in Political Science.

What brought you to ESnet?

As a kid growing up in the Berkeley area, you always heard about how there is exciting research happening in the LBNL buildings up on the hill. When my friend got a job with ESnet in 2016, I knew I’d like to join them there someday. I’m very excited to support some of the best energy researchers in the world and can’t wait to see how they’re improving the ways we produce, consume, and store energy. 

What is the most exciting thing going on in your field right now?

Without a doubt it’s the leaps and bounds made in computer processor development, these days you can get a processor that is a fraction of the size of a Pentium 4 with nearly double the processing power and very low energy usage. The computing applications for these processors in my field are very exciting.

What book would you recommend?

Steve Wozniak’s autobiography “iWoz”

Three questions with a new staff member –James Kafader with Software Engineering.

Please welcome James Kafader to ESnet! James comes to us from Internet Archive (IA), where he worked on the Archive-It team, which develops and maintains a turnkey archiving platform. Archive-It partners with external institutions and national libraries to capture data on their behalf. It is essentially the project incubator at IA and focused on high-quality and large-scale archiving. The data collected by Archive-It represents about 30% of the available captures in the global wayback machine.

Question 1: What brought you to ESnet?

In 2020, I spent a lot of time thinking about the interconnectedness of natural systems, and how they relate to the earth’s climate. It strikes me that it’s imperative, as a planet and nation, to focus on reducing the impact of climate change in short order. This line of thinking led me to dedicate my time to science, which could have a positive impact on the global climate.

Question 2: What is the most exciting thing going on in your field right now?

This is a good question. I consider myself very much a generalist in terms of how I approach software development, as well as in my overall view of reality. My view of computational systems is very conservative as well — I like to understand the algorithms involved with any new technology as intimately as possible before selecting it for use. I’d say in many ways that the most exciting thing going on in my field is renewed interest in how large-scale systems affect equitability for their participants; that is, how the networks, systems, and structures that we build affect outcomes for each of us.

Question 3: What book would you recommend?

I recently read Breath by James Nestor. It was an engaging read and helped a lot with my mood and stability, if not the most scientifically accurate thing I’ve ever read. Another favorite is Difficult Conversations by Sheila Heen, Douglas Stone, and Bruce Patton.