Arecibo Support Wins SC21 HPCwire Readers’ Choice Award!

Arecibo dish after the collapse

As part of a team spanning 15 government, academic, and industrial partners, the Engagement and Performance Operations Center (EPOC) – a collaboration between Indiana University and ESnet – was awarded the “Best HPC Collaboration (Academia/Government/Industry)” HPCwire Readers’ Choice award on Tuesday, Nov. 16. The award, which was made at the High Performance Computing, Networking, Storage and Analysis (SC21) conference, recognizes the effort and collaboration required to move and safeguard irreplaceable data (over 50 years of astronomical observations) from the Arecibo observatory following the structural collapse of this scientific resource in 2016.

At ESnet, Ken Miller, George Robb, and Jason Zurawski supported these efforts as both full members of EPOC and ESnet staff. Both Jason and Ken divide their time between ESnet’s Science Engagement Team, while George is with ESnet’s Infrastructure Systems group. LightBytes looped up with Jason Zurawski to get his thoughts on the project and award, and an update on the Arecibo effort since our post in April 2021 on this project.

Now that data from Arecibo has been migrated to the Texas Advanced Computing Center (TACC), what happens now, and how will this data be used?

The team at the University of Central Florida has been engaged with TACC on several ways to build up the capabilities for their data analysis and sharing requirements. They are working to deploy a portal that will allow researchers access to the data, as well as build workflows to investigate and process using computation provided by TACC.

The team at Arecibo is also still going to process much older data that still resides on tape. Due to the delicate state of the media, it is carefully being read and transferred to on-island storage before being transmitted to TACC for archiving. This work will take several more months to complete.

What do you think the lessons from this effort are in terms of getting so many different organizations to work together to support this very challenging problem?

The collapse that Arecibo experienced sent ripples through the R&E community because researchers and technology professionals alike knew there was a limited window to act on replicating important observations gathered over the years. The partners in this effort were motivated to act, and that removed many barriers to putting some solutions in place. Everyone collaborated efficiently with their core competencies, and we continue to work together as the next steps for the scientific collaboration are planned.

Plans are starting to emerge for a “next generation” Arecibo based on the loss of this instrument, how might the next generation of data management resources be shaped by this collaboration?

Now that there has been some time to evaluate the work, it has also spurred UCF and Arecibo to plan for the future with respect to computation, storage, and network connectivity both in Puerto Rico and in Florida.  With these improvements planned, they will be well-positioned to serve the scientific data for years to come.  New instruments will no doubt increase the data demands by many orders of magnitude – addressing all aspects of the data pipeline now, and then gradually increasing the capabilities over time, will help to prepare for these emerging challenges. 

Congratulations to all of the organizations and staff who helped prevent the loss of this data!

Berkeley Lab and ESnet Document Flow, Performance of 56 Terabytes Climate Data Transfer

Visualization by Prabhat (Berkeley Lab).
The simulated storms seen in this visualization are generated from the finite volume version of NCAR’s Community Atmosphere Model. Visualization by Prabhat (Berkeley Lab).

In a recent paper entitled “An Assessment of Data Transfer Performance for Large‐Scale Climate Data Analysis and Recommendations for the Data Infrastructure for CMIP6,” experts from Lawrence Berkeley National Laboratory (Berkeley Lab) and ESnet (the Energy Sciences Network, document the data transfer workflow, data performance, and other aspects of transferring approximately 56 terabytes of climate model output data for further analysis.

The data, required for tracking and characterizing extratropical storms, needed to be moved from the distributed Coupled Model Intercomparison Project (CMIP5) archive to the National Energy Research Supercomputing Center (NERSC) at Berkeley Lab.

The authors found that there is significant room for improvement in the data transfer capabilities currently in place for CMIP5, both in terms of workflow mechanics and in data transfer performance. In particular, the paper notes that performance improvements of at least an order of magnitude are within technical reach using current best practices.

To illustrate this, the authors used Globus to transfer the same raw data set between NERSC and Argonne Leadership Computing Facility (ALCF) at Argonne National Lab.

Read the Globus story:
Read the paper: