High Energy Physics Requirements Review Now Available: The Data Deluge Shows no Sign of Cresting!

Lauren Rotman and Jason Zurawski

Across the physical sciences, new instruments and capabilities are continuing a relentless growth in data production and need for high speed networking and analysis resources. 

ESnet stays on-top of these trends via the Network Requirements Review process, which for the past 15 years has been a remarkable and useful collaboration between the DOE Office of Advanced Supercomputing Research (ASCR), ESnet and science programs across the DOE Office of Science.

The latest Network Requirements Review for the Office of Science High Energy Physics program office (HEP) is now available — among many other findings, this review confirms that the exponential growth of scientific data generation will continue unabated as we proceed into what may well be a new golden age for high energy physics research. Some samples include:

The upcoming High Luminosity era for the Large Hadron Collider (beyond 2027, or Run-4) will require multi-Tbps network speeds to support globally dispersed “Tier 1” HPC resources.  Scientists will use the LHC to uncover how the Higgs-Boson interacts and gives mass to other particles, and explore emerging evidence for particle behaviors not explained by current physics models. Each data-taking year, the experiments, ATLAS and CMS combined, are expected to accumulate roughly 1 EB of new data and it is estimated that complete data set sizes may routinely exceed 100 PB.  

Expected maximum luminosity and integrated luminosity for the LHC as a function of calendar year, data produced tracks with improved luminosity and resolution

Scientists at the Deep Underground Neutrino Experiment (DUNE) in South Dakota and at Fermilab in Illinois, will use high speed data transfer to identify supernova events, as part of ongoing measurement of neutrino interactions. Supernovae measured by DUNE will generate over 200TB of compressed data per event, and Research and Educational Networks (REN) must be able to supply highly reliable, predictable data transfer capabilities to provide telescope targeting data to global arrays.

10kt DUNE Far-Detector SP module, showing the alternating 58 m long (into the page), 12 m high anode (A) and cathode (C) planes, as well as the field cage that surrounds the drift regions between the anode and cathode planes. The blank area on the left side was added to show the profile of a single anode plane assembly (APA). Person included for scale.

The Cosmic Microwave Background, Stage 4 (CMB-S4) experiment will require data management and transfer capabilities in some of the most demanding locations on earth. Operating two observational locations, and multiple telescopes with a combined total of 500,000 cryogenically-cooled superconducting detectors at the South Pole and in the Chilean Atacama Desert, CMB-S4 will provide an unprecedented picture back into the start of the Universe. Operating for seven years in these conditions, 22 TB (~8 TB at the South Pole and ~14 TB in Chile) of data will be generated daily, leading to an accrual of 3 PB annually, and as much as 100 TB over the full program lifecycle.

Two Cross-Dragone (CD) telescopes (one is pictured above) with six meter diameter input apertures will be deployed at the Chilean site to map roughly 70% of the sky every day to support the dark universe, matter-mapping, and time-varying mm-wave sky science goals. Image and caption courtesy of the CMB-S4 Project

Network Requirements Reviews analyze the current, near, and long-term needs of the HEP community, providing a network and data-centric understanding of the scientific process used by the researchers and scientists. These requirements reviews drive ESnet’s investments in new services and capabilities, and enable ESnet to build strong partnerships with Office of Science (SC) programs, PIs, and user facilities. More information on this ESnet requirements review process can be found here.

We would like to thank the 13 HEP projects, and all of the HEP & DOE Office of Science collaborators who generously gave of their time, expertise, and most importantly, their enthusiasm for the future of high energy physics, as part of creating this report.

We want to especially thank the entire Science Engagement team plus Kate Robinson, and Dale Carder with our Network Engineering group who all provided outstanding support and technical expertise.

Programmable Per-Packet Network Telemetry: From Wire to Kafka at Scale

High-speed intelligent Research and Educational Networks (RENs),  such as the one we’re building as part of the ESnet 6 program, will require a greater ability to understand and manage traffic flows. One research program underway to provide this capability is the High Touch effort,  a programmable, scalable, and expressive hardware and software solution that produces and analyzes per-packet telemetry information with nanosecond-accurate timing. Along with Zhang Liu, Bruce Mah, Yatish Kumar, and Chin Guok, I have just released a presentation for the Proceedings of the 2021 Virtual Meeting on Systems and Network Telemetry and Analytics, describing work underway to create a programmable, very high speed, packet monitoring, and telemetry capability as part of bringing High-Touch to life.

Richard Cziva presenting at the SNTA ’21: Proceedings of the 2021 on Systems and Network Telemetry and Analytics

For more information on this talk, please see this link.

Fatema Bannat Wala named Zeek Community Champion!

Fatema Bannat Wala

Fatema Bannat Wala with our Cyber Security team was recognized with the 2021 Zeek Community Champion award by Corelight! More information on the award and her work with Zeek can be found here.

Zeek is an open source network security monitoring software extensively used by ESnet. Zeek (formally called Bro) was initially developed by researchers at Berkeley Lab, and more information on ESnet’s use of Zeek can be found in Fatema’s October Light Bytes post.


Three Questions with a new staff member: John Amerkhanian

Please meet our newest Network Operations Center Engineer, John Amerkhanian. John comes to us from Richmond, CA, and grew up locally in Albany, CA. He graduated from UC Berkeley in 2015 with a degree in Political Science.

What brought you to ESnet?

As a kid growing up in the Berkeley area, you always heard about how there is exciting research happening in the LBNL buildings up on the hill. When my friend got a job with ESnet in 2016, I knew I’d like to join them there someday. I’m very excited to support some of the best energy researchers in the world and can’t wait to see how they’re improving the ways we produce, consume, and store energy. 

What is the most exciting thing going on in your field right now?

Without a doubt it’s the leaps and bounds made in computer processor development, these days you can get a processor that is a fraction of the size of a Pentium 4 with nearly double the processing power and very low energy usage. The computing applications for these processors in my field are very exciting.

What book would you recommend?

Steve Wozniak’s autobiography “iWoz”